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S-1. THE MEASUREMENT OF RHEOLOGICAL
PROPERTIES

The shear stress σ is defined by [1]

σ =
1

L3

∑
i>j

(
∂U(rij)

∂rij
· x̂
)

(rij · ŷ), (1)

where U(rij) is the pair interaction potential defined in
the main text, rij ≡ ri − rj , ri is the position of the
i-th particle, x̂ and ŷ are the unit vectors in the x and y
directions, and L is the linear box length.

In the finite strain-rate protocol, the shear strain given
by γ(t) = γ0 sin(2πt/Tcyc) with an oscillation period
Tcyc and a strain amplitude γ0 is applied to the sys-
tem. We calculate the leading order coefficients of the
nonlinear stress-strain relation [2] by fitting the instan-
taneous shear stress σ(t) to σ0 sin(2πt/Tcyc + δ0), where
σ0 is the stress magnitude and δ0 is the phase lag between
stress and strain. Using σ0 and δ0, we calculate the stor-
age modulus G′ and loss modulus G′′ from the relation
G′ + iG′′ = σ0e

iδ0/γ0. We measure σ0, δ0, G′, and G′′

at each cycle. The steady-state values are obtained by
performing a long time average after the system reaches
a steady state.

In the athermal quasi-static (AQS) protocol, on the
other hand, we employ the accumulated strain defined by
γaccu ≡

∫
0
|dγ| as a substitute for the time scale. After

each cycle, γaccu is increased by 4γ0 which is equivalent
to the oscillation period. Figs. S1(a) and (c) are typical σ
and γ as a function of γaccu/4γ0 in AQS simulation. Note
that γaccu = 4γ0(n + 0.25) and 4γ0(n + 0.75) with n =
0, 1, 2, · · · are the positions at which the shear direction
is reversed.

In order to extract σ0 and δ0 from the AQS data, we
convert γ to a time t∗ using γ = γ0 sin(2πt∗). We then
transform σ = σ(γaccu) to σ = σ(t∗), from which σ0 and
δ0 are obtained by fitting the relation σ = σ0 sin(2πt∗ +
δ0). G′ and G′′ are obtained consequently. Figs. S1(b)
and (d) are γ(t∗) and σ(t∗) mapped from Figs. S1(a) and
(c) obtained using this procedure.

S-2. NON-AFFINE DEFORMATION

For amorphous solids under shear deformation, the dis-
placement of the particles are often non-affine [3]. In
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FIG. S1. Typical profiles of the strain (a) and stress (c) in the
AQS protocol as a function of the accumulated strain γaccu
scaled by the period 4γ0. The right panels are replots of the
strain (b) and stress (d) using the scaled time t∗ defined by
γ = γ0 sin(2πt∗) (see the text). The red dashed curve in (d)
represents the best fit of σ by σ0 sin(2πt∗ + δ0). In these
figures, the strain amplitude is γ0 = 0.13 and the system size
N = 48000.

other words, the particle displacements are not simply
described by the affine transformation of the coordi-
nate by shear even when the macroscopic strain is very
small [4]. This non-affine contribution of the particle
displacements plays an essential role in determining the
rheological properties. In our study, we decomposed the
displacement ∆ri of the i-th particle during a small time
increment into the affine and non-affine contributions as

∆ri = ∆r
(aff)
i + ∆r

(na)
i , (2)

where

∆r
(aff)
i = ∆γ · (ri · ŷ) · x̂, (3)

is the affine displacement due to the background shear
transformation. In the finite strain-rate protocol, ∆γ =
γ̇(t)∆t is the strain change during period [t, t+∆t]. In or-
der to quantify the non-affine contribution, we introduce
the one-cycle non-affine deformation of the i-th particle
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FIG. S2. Typical profile of the coarse-grained one-cycle non-

affine deformation d̄
(y)
na as a function of y/L for the system

with horizontal shear-band shown in Fig. S4(c), where L is
the linear box length. Three typical trajectories for particles
located in y/L = 0, 0.3, and 0.5 are plotted in Fig. S5. The
error bar of each data point represents the standard deviation
inside the slice which we use to coarse-grain the system.

defined by

dna,i(n) ≡
∫ nTcyc

(n−1)Tcyc

∣∣∣dr(na)
i (t)

dt

∣∣∣dt, (4)

where we have used non-affine trajectories r
(na)
i (t) which

is defined by [5]

r
(na)
i (t) ≡

∫ t

0

(
lim

∆t→0

∆ri(t
′)−∆r

(aff)
i (t′)

∆t

)
dt′. (5)

dna,i(n) characterizes the arc length of the non-affine tra-
jectory of the i-th particle in the n-th oscillatory cycle,
and its physical meaning is similar to the atomic strain
obtained from the particle movement relative to its near-
est neighbor particles [6, 7]. In the AQS protocol, Eq. (4)
should be modified as

dna,i(n) ≡
∫ 4nγ0

4(n−1)γ0

∣∣∣ dr(na)
i

dγaccu

∣∣∣dγaccu, (6)

and ∆γ in Eq. (3) is a strain increment. Typical non-
affine trajectories under oscillatory shear and their asso-
ciated dna,i values are shown in Sec. S-6 B.

S-3. THE ORDER PARAMETER OF
SHEAR-BAND

For amorphous solids under shear, the shear-bands are
often observed. The shear-band can be most easily visu-
alized using the spatial distribution of non-affine defor-
mation dna,i defined in Eqs. (4) and (6). Shear-band can

be either horizontal or vertical to the flow direction [8, 9].
Typical horizontal shear-band is shown in Fig. S4(c) in
which the spatial distribution of dna,i is represented by
color map.

To quantify the inhomogeneity of the shear-band, we
introduce a shear-band order parameter defined in the
following way. First we divide the system into Ns slices
along the x direction (we choose Ns = 50 for all system
sizes N we studied. We have checked that the results are
insensitive to Ns if Ns ≥ 50). Then, we coarse-grain dna,i

by taking average inside the slices as

d̄(x)
na (xk) ≡ 1

Nk

∑′

i

dna,i (7)

for the x-direction. Here k = 1, ..., Ns is the index of
slice, xk = (k − 0.5)L/Ns is the center position of the
slice k, L is the linear box length, Nk is the number of
particle in the slice k, and

∑′
is the summation over

all the particles located in the k-th slice. We also di-
vide the system into Ns slices along the y direction and

define d̄
(y)
na (yk) in a similar way. Typical d̄

(y)
na (yk) for a

shear-band formed parallel to the x-direction is shown in

Fig. S2. Finally, from d̄
(x)
na (xk) and d̄

(y)
na (yk), we define the

normalized distributions p
(α)
k ≡ d̄

(α)
na (αk)/

∑Ns

l=1 d̄
(α)
na (αl)

for k = 1, ..., Ns and α ∈ {x, y}, and then we calculate
the corresponding Shannon entropy

H(α) ≡ −
Ns∑
k=1

p
(α)
k ln p

(α)
k . (8)

Finally, the shear-band order parameter H is defined by

H ≡ H(y) −H(x)

Hmax
, (9)

where Hmax ≡ lnNs is a normalized factor defined by
the Shannon entropy for a uniform distribution. If the
deformation is homogeneous, i.e., no shear-band, then
H(x) = H(y) = Hmax, and thus we obtain H = 0. On the
other hand, if there is a horizontal (vertical) shear-band,
then H(y) � H(x) (H(y) � H(x)), and thus we obtain H
with finite and negative (positive) value. The strength
of shear-band is captured by the absolute value of H. A
typical value of |H| when the clear shear-band is formed
is in the order of 10−2. In this study, we define that the
shear-band is formed when |H| exceeds numerical criteria
of 0.08 for all system sizes we studied.

S-4. ESTIMATION OF THE CRITICAL
TEMPERATURE

In the main text, we found that there exists a criti-
cal temperature Tc separating the nonequilibrium phase
diagram into the mechanical annealing (MA) and ther-
mal annealing (TA) regimes. Its value can be esti-
mated by the power-law fitting of the yield strain am-
plitude γY versus T−1

init relation in the TA regime (see
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FIG. S3. The energy-strain (E-γ) curves for systems at Tinit =
0.5 (a) and 0.085 (b) for several strain amplitudes γ0. The
gray curves represent the trajectories of E from the initial
configurations marked by the red dots. The black curves are
the averaged trajectories in the steady states. For γ0 = 0.104
of (b), one observes the coexistence of the “initial branch”
where the system stay near the ground energy state and the
“yielded branch” at high energy. Note that this coexistence
is not observed in the poorly annealed system (a). In these
figures, the system size is N = 12000 and the finite strain-rate
protocol with γ̇0 = 6.2832 × 10−4. is used. The yield strain
amplitudes are γY ≈ 0.078 for Tinit = 0.5 and γY ≈ 0.101 for
Tinit = 0.085.

Fig. 2(b) of the main text). To be specific, we fit γY

with γc + A0|T−1
init − T−1

c |β , where γc = 0.078 represent-
ing the yield strain amplitude in the MA regime. The
best fit shown as the black solid line in the TA regime of
Fig. 2(b) of the main text gives A0 ≈ 0.017, Tc ≈ 0.101,
and β ≈ 0.542.

S-5. THE DEFINITION OF YIELD STRAIN
AMPLITUDE AND THE ASSOCIATED

DISCONTINUOUS CHANGES

In this section, we present the definition of yield strain
amplitude γY (shown in Fig. 2(b) of the main text) and
the discontinuous change of rheological quantities above
yielding, such as ∆σ0, ∆δ0, and ∆G′ (shown in Fig. 1(d)
of the main text).

A. Bistability in the TA regime

In the main text, we have shown that the oscilla-
tory shear brings the system in the MA regime into a

deeper energy state before yielding, up to the deepest
energy at γ0 → γ−Y . On the other hand, for systems
in the TA regime, the mechanical training by oscillatory
shear does not stabilize the system and the system’s ini-
tial memories are kept until yielding. Fig. S3 demon-
strates the evolution of the instantaneous average energy
E ≡ (1/N)

∑
i>j U(rij) as a function of the strain γ for

typical MA and TA systems under several strain ampli-
tude γ0 across the yielding point.

Interestingly, in the TA regime, we observe a bistable
or coexistence phase in the vicinity of yielding, γ0 ≈ γY;
Look at Fig. S3(b), where γ0 = 0.104 (> γY ≈ 0.101,
whose exact definition will be given below). We clearly
observe that some trajectories stay in the initial ground
state (the initial branch) where the trajectory is parabolic
whereas the others reach the higher energy state with
loop-shaped trajectories signaling that the system is in
the yielded branch. For a finite system size simulation,
the initial and yielded branches can coexist over a finite
region of the strain amplitude. This coexistence region
is too narrow to recognize in Figs. 1(a)–(c) and 2(a) in
the main text. Larger system size makes this coexistence
region even narrower (data not shown), which is consis-
tent with the observation that yielding transition of a
well-annealed system under uniform shear is sharper for
larger systems [10].

We emphasize that this bistable coexistence of the ini-
tial and yielded branches is an unique feature of TA
regime, which is strongly related to the abrupt and dis-
continuous changes of the physical observables such as
σ0 and δ0 at the yielding point (see Fig. 1(d) of the main
text). In the MA regime, where ∆σ, ∆δ0, and ∆G′ are
negligibly small (see also Sec. S-6 E for more discussion),
one does not observe such a coexistence region even for
a larger system (N = 48000).

B. The definition of yield strain amplitude

We use the different methods to determine the yielding
transition point γY depending on whether the system is
in the MA or TA regimes. In the MA regime, we can
simply define γY as the point beyond which EIS starts
increasing. On the other hand, in the TA regime, due to
the coexistence region over which the initial and yielded
branches are overlapped, we define γY as the geometri-
cal average of the endpoint of both branches. In other
words, γY ≡ (γ1 + γ2)/2, where γ1 and γ2 are the small-
est and largest values of the yielded and initial brunches,
respectively. Note that the error of the estimated γY’s
has different origins in the MA and TA regimes. In the
MA regime, it is merely due to the finite discretization of
the data point. In the TA regime, it is due to the finite
system size, and the corresponding error is expected to
disappear in the thermodynamic limit.
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γ̇0

N
1500 3000 6000 12000 48000

0 (AQS) N N N T Y
6.2832× 10−4 N N N T Y
5.2360× 10−3 N N N N N
3.1416× 10−2 N N N N N

TABLE I. The existence condition for the persistent shear-
band in the steady state after yielding. Several different com-
binations of the system size N and the strain rate γ̇0 are
explored. In this table, ‘Y’ and ‘N’ represent the cases that
the shear-band is observed and is not observed, respectively.
‘T’ represents the case where the metastable shear-band is
found.

Setup
γ0 0.085 0.09 0.11 0.12 0.125 0.13 0.15

N = 12000 (AQS) T N N N N N N
N = 48000 (AQS) Y Y Y Y T N N

TABLE II. The existence condition for the persistent shear-
band in the steady state after yielding. The dependence on
the strain amplitude γ0 for N = 12000 and 48000 systems
in the AQS limit are explored. Note that the yield strain
amplitude γY for these two cases is about 0.08 (see Fig. S10(b)
for details). The notations are the same as Table I.

C. The discontinuous changes above yielding

In Fig. 1(d) of the main text, we plot the height of the
discontinuous jump of several rheological observables at
the yielding transition point. Due to i) the presence of the
coexistence of the initial and yielded brunches and ii) the
small but finite discontinuity even in the MA regime (see
Sec. S-6 E for details), special care is required to define
these jumps. A precise definition of ∆σ0, ∆δ0, and ∆G′

is

∆A ≡
∣∣∣AY (γ0 = γY)−Aini(γ0 = γY)

Aini(γ0 = γY)

∣∣∣, (10)

where A ∈ {σ0, δ0, G
′}. Aini(γ0) and AY (γ0) are the

observables in the initial and yielded branches, respec-
tively. In the MA regime, this definition naturally leads
to ∆A = 0 since there is no bistability.

S-6. THE EFFECTS OF FINITE SIZE AND
FINITE STRAIN RATE

A. The existence condition of shear-bands

In the main text, we argued that a persistent shear-
band might form in the steady state for the system under
oscillatory shear after yielding. In this subsection, we
systematically examine the effects of the system-size N ,
strain rate γ̇0, and strain amplitude γ0 on the existence
of the shear-bands.

Table I summarizes our simulation results for various
N and γ̇0. We found that persistent shear-bands are

γ̇0

N
1500 3000 6000 12000 48000

0 (AQS) Y Y Y Y Y
6.2832× 10−4 Y Y Y Y Y
5.2360× 10−3 Y Y Y Y Y
3.1416× 10−2 N N N N N

TABLE III. The existence condition for the initial shear-band
for well annealed system (Tinit = 0.085) during the relaxation
process after yielding (γ0 = 0.11 > γY). Several different
combinations of the system size N and maximum strain rate
γ̇0 are explored. The notations are the same as Table I.

observed only if N is large and γ̇0 is small enough. In-
terestingly, in an intermediate region where N = 12000
and γ̇0 ≥ 6.3 × 10−4, we found that the system is in a
metastable regime and the shear-bands are repeatedly
created and annihilated in the steady state. The ex-
istence of the persistent shear-band also sensitively de-
pends on γ0. In Table II, we examine the effect of γ0 on
the shear-band formation. We find that both the per-
sistent and metastable shear-band can be observed only
when γ0 is close to the yield strain amplitude γY. For
large γ0, say γ0 ≥ 0.13, the shear-band in the steady
state does not exist even for N = 48000 in the AQS
limit.

We found that the persistent shear-band is observed for
both MA and TA regime, irrespective of the preparation
temperature Tinit, as long as N is large and γ̇0 is small.
We emphasize that the persistent shear-band is observed
in the steady state, hence it is naturally independent of
Tinit.

On the contrary, the initiation of the shear-band for-
mation during the transient region on the way to the
steady state after yielding is sensitively affected by Tinit.
As we show in the main text, exactly when the well-
annealed system with Tinit < Tc yields, a strong shear-
band concomitantly appears, which gradually weakens
during the transient period. We refer to this as the “ini-
tial shear-band”. In Table III, we list the existence con-
dition of the initial shear-band for various N and γ̇0.
Interestingly, the initial shear-band formation is less sen-
sitive to N and γ̇0 than that of the persistent shear-
band (see Table. I). The initial shear-band exists even
when the persistent shear-band is absent in the steady
state. If γ̇0 is too large, even the initial shear-band
disappears. Fig. S4 demonstrates this γ̇0-dependence.
Fig. S4(a) shows that the energy at the end of each cycle
E0(n) ≡ E(t = nTcyc) increases with time, as the system
evolves towards the yielding. Fig. S4(b) shows the n-
dependence of the shear-band order parameter |H|. The
initial shear-band can form only for small γ̇0 (see the red
squares in Fig. S4(b)) where the shear-band develops at
the transient period n ≈ 2 but fades away eventually in
the long time limit, since the γ0 we used for demonstra-
tion (γ0 = 0.15) is larger then the maximum value for the
existence of persistent shear band (≈ 0.13, see Table I).
These observations suggest that the mechanism of the
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FIG. S4. Shear-band formation process of well-annealed sys-
tems with the system size N = 12000, strain amplitude
γ0 = 0.15 > γY, and preparation temperature Tinit = 0.085,
varying the strain rate γ̇0 (see the legend shown in (b). One
realization is plotted for each γ̇0’s). We plot the energy at
the end of each cycle E0 (a) and the shear-band order pa-
rameter |H| (b) versus the number of shearing cycle n. The
arrows in (b) indicate the times when the value of |H| are
maximized (n = 2 for γ̇0 = 6.2832 × 10−4 and n = 250 for
γ̇0 = 3.1416×10−2. Their corresponding spatial profile of the
one-cycle non-affine deformation dna,i are plotted in (c) and
(d), respectively). It is worth to note that, even though E0

changes dramatically for the case γ̇0 = 3.1416 × 10−2 indi-
cating that yielding has actually happened, both the initial
and persistent shear-bands are absent during the relaxation
process.

formation of persistent shear-band and initial shear-band
is fundamentally different. The latter originates from ini-
tial stability of the glass sample, or the initial memories,
which is akin to the sharp shear-bands observed for well
annealed glasses under uniform shear [10].
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FIG. S5. Three typical non-affine trajectories on the x-y (a)
and y-z (b) planes for the shear-band shown in Fig. S4(c)
(the corresponding profile of coarse-grained dna,i is shown in
Fig. S2). Note that x̂ is the flow direction, ŷ is the shear-
gradient direction, and ẑ is the vorticity direction. The par-
ticles are chosen so that they are located at yi/L ≈ 0.5, 0,
and 0.3, representing the positions inside, outside, and on the
boundary of shear-band, respectively (see the legend shown
in (a)). The trajectories are plotted within one shearing cy-
cle (n = 2) and their corresponding dna,i(n = 2) values are
12.39, 1.19, and 5.05. We shift all of the trajectories by

r
(na)
i (ref) ≡ r

(na)
i (t = Tcyc), the end position of non-affine

trajectory of the first cycle, for better comparison.

B. The non-affine trajectories when a shear-band is
present

In Figs. S2 and S4(c), we have shown that when an
initial shear-band is formed (at cycle n = 2), its spatial
distribution of dna,i is highly inhomogeneous. Typically,
for particles located in the center of the shear-band, one
finds dna,i ≈ 13 for some particles. To see why there are
such large value of dna,i, in Fig. S5, we plot three rep-

resentative one-cycle non-affine trajectories r
(na)
i (t) (de-

fined in Sec. S-2) for particles located inside, outside, and
on the boundary of shear-band, respectively. For the par-
ticle inside the shear-band, the trajectory winds around
to form a large loop (see black curve in Figs. S5(a) and
(b)). This leads to a large value of dna,i even though
the one-cycle end-to-end distance is very small (typically
smaller than one particle diameter). On the other hand,
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γ̇0 = 0 represents the AQS limit. (b) The γ̇0-dependence on
the yield strain amplitude γY. The system size is N = 12000
and the preparation temperature Tinit = 0.5. The error bars
represent the standard deviation among samples in (a) and
the uncertainty region to find γY in (b).

for the particles located away from the shear-band center,

the r
(na)
i (t) is relatively localized (red and green curves

in Figs. S5(a) and (b)) and results in smaller dna,i.

C. Strain-rate dependence on the yielding
transition

In this subsection, we study the effect of γ̇0 on the
yielding transition. For illustration, we focus on a poorly
annealed system with Tinit = 0.5 and N = 12000. The
results of the steady state inherent structure (Fig. S6(a))
and rheological properties (Fig. S7) reveal that the yield
strain amplitude γY increases with γ̇0, which is consistent
with the previous works in oscillatory shear [11] and uni-
form shear [12]. These results are natural because, if the
strain rate is large, plastic activities would be suppressed
due to shorter response time in each cycle, and this would
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FIG. S7. The steady state rheological properties under oscil-
latory shear as a function of the strain amplitude γ0 for poorly
annealed system with several different strain rate γ̇0’s (see the
legend shown in (a)). (a) The stress amplitude σ0, (b) phase
lag between stress and strain δ0, (c) storage modulus G′, and
(d) loss modulus G′′. In these figures, we use the system size
N = 12000 and preparation temperature Tinit = 0.5. The
error bars represent the standard deviation among samples.

facilitate affine displacements [13, 14] and coordinated
motions [15] of particles. As a result, γY, which marks
the maximum strain amplitude where the particles can
maintain their structure under oscillatory shear, should
shift to a larger value. The dependence of γY on γ̇0 is
summarized in Fig. S6(b).

Another important message is that the result of γ̇0 =
6.2832×10−4 almost overlaps with the results of the AQS
limit, except at the very large γ0 (see black circles and red
squares in Figs. S6(a) and S7(a)–(d)). This guarantees
that our results which we obtained using the finite strain-
rate protocol with γ̇0 = 6.2832 × 10−4 in the main text,
especially the phase diagram shown in Fig. 2(b) in the
main text, agree with those of the AQS protocol.

D. The phase diagram in higher strain rate

In this subsection, we consider how the phase diagram
is altered when the high strain rate γ̇0 = 3.1416 × 10−2

is used. Recall that this strain rate is high enough to
diminish both the initial shear-band and the persistent
shear-band (see Tables I and III). We study the Tinit de-
pendence of the yielding transition. The result is shown
in Fig. S8(a). Compared with Fig. 2(a) in the main text,
we find that the results remain qualitatively unchanged.
The major difference is a systematic shift of γY for all
curves with different Tinit. Most importantly, even in
such a high strain rate, the critical temperature Tc can
still be identified. In Fig. S8(b), we compare the de-
pendence of γY on 1/Tinit for both low and high strain
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FIG. S8. (a) The steady state inherent structure EIS as a
function of the strain amplitude γ0 for the systems under
higher strain rate γ̇0 = 3.1416 × 10−2 with several different
preparation temperature Tinit’s (see the legend shown in (a)).
Dashed vertical lines represent the discontinuous jumps. (b)
The yield strain amplitude γY versus 1/Tinit for the systems
with lower (black circles) and higher (blue triangles) γ̇0. Note
that the EIS versus γ0 plot and the phase diagram of lower
γ̇0 are shown in Fig. 2 of the main text. The red dashed line
in (b) represents the critical temperature Tc ≈ 0.101 (see the
main text for details). In these figures, we use the systems
under oscillatory shear with the system size N = 12000. The
error bars represent the standard deviation among samples in
(a) and the uncertainty region to find γY in (b).

rates. The critical temperature seems to be insensitive
to γ̇0. Combined this result with the fact that there is no
shear-band in the high strain rate, we conclude that the
critical temperature is independent of both strain rate
and the presence/absence of shear-banding. Instead, it
more likely originates from the intrinsic characteristics of
the initial glassy states.
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FIG. S9. The relaxation process of (a) the energy E0 at the
end of each cycle and (b) the one-cycle displacement ∆r as a
function of n with several different system size N ’s (see the
legend shown in (a)). (c) The average relaxation cycle τL as a
function of N . In these figures, we use the AQS protocol with
the strain amplitude γ0 = 0.04 (< γY) and the preparation
temperature Tinit = 0.5 (a poorly annealed system). The error
bars in (c) represent the standard deviation among samples.

E. Effect of the system size and the influence of
the persistent shear-band on the yielding transition

In this subsection, we shall consider whether the pres-
ence/absence of the persistent shear-band affects the
yielding transition itself. In order to control the shear-
band formation, we change the system size N . Here, we
shall consider a poorly annealed system (Tinit = 0.5) and
use the AQS protocol to avoid the effect of the finite
strain rate.

Before we proceed, it is convenient to introduce an-
other nonequilibrium phase transition known as the
reversible-irreversible (RI) transition [16, 17], which is
accompanied by the yielding transition under oscillatory
shear: When γ0 < γY and in the steady state, each parti-
cle comes back to the identical position after every cycle
(or multiple cycles) of oscillatory shear, hence the sys-



8

10
3

10
4

10
5

N

0.08

0.09

� Y

0 0.05 0.1 0.15 0.2
�
0

0.26

0.27

0.28

0.29

E
IS

3000
12000
48000

N =

(a)

(b)

0.06 0.08 0.1

0.26

0.27

FIG. S10. (a) The steady state inherent structure EIS as a
function of the strain amplitude γ0 for poorly annealed sys-
tems under oscillatory shear in the AQS limit with several
different system size N ’s (see the legend shown in (a)). The
inset shows the zoom-in of the region in the vicinity of the
yielding strain amplitude for N = 12000 and 48000 systems.
The solid curves in the inset are guides for the eyes. (b) The
yield strain amplitude γY versus N . In these figures, we use
the systems with the preparation temperature Tinit = 0.5.
The error bars represent the standard deviation among sam-
ples in (a) and the uncertainty region to find γY in (b).

tem is in a reversible state [18, 19]. If γ0 > γY, on the
other hand, many particles do not meet the above con-
dition and their trajectories become diffusive. It is the
irreversible state. A typical order parameter of the RI
transition is the one-cycle displacement ∆r defined as
the average end-to-end distance of particle trajectories
per cycle;

∆r(n) ≡ 1

N

∑
i

∣∣∣ri(n)− ri(n− 1)
∣∣∣, (11)

where n is the number of cycles, ri(n) denotes the posi-
tion of the i-th particle at the end of the n-th cycle. The
steady-state value of ∆r is zero in the reversible state and
discontinuously jumps to a finite value at γ0 = γY. Typ-
ical time (n) evolution of ∆r towards a reversible state
below yielding is shown together with that of the energy
E0 in Figs. S9 (a) and (b).
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FIG. S11. The steady state rheological properties under os-
cillatory shear in the AQS limit as a function of the strain
amplitude γ0 for poorly annealed systems with several differ-
ent system size N ’s (see the legend shown in (a)). (a) The
stress amplitude σ0, (b) phase lag between stress and strain
δ0, (c) storage modulus G′, and (d) loss modulus G′′. In
these figures, we use the systems with preparation tempera-
ture Tinit = 0.5. The error bars in each figures represent the
standard deviation among samples.

Figs. S9(c) shows that the relaxation time τL for the
system to reach a reversible state increases with system
size [16]. During the relaxation process towards a re-
versible state, the configuration of particles is optimized
so that the number of plastic events is largely suppressed
[18]. Therefore, it is natural to expect that a larger sys-
tem should take a longer time to reach stationary state
because there are more plastic events to be eliminated.

In Fig. S10(a), we show the steady state inherent struc-
ture EIS as a function of γ0 for three different system
sizes (N = 3000, 12000, and 48000). It is clearly demon-
strated that EIS decreases with increasing N below yield-
ing. This trend can also be seen in Fig. S9(a). One
possible explanation is that the larger system requires
the longer τL, which in turn makes the system explore
the potential energy landscape for a longer time and set-
tle down in a deeper energy state before being trapped
in a periodic trajectory. After yielding, one observes
that EIS is less sensitive to N , except for the vicinity
of yielding point, where γY sensitively depends on N as
shown in Fig. S10(b) (see also Ref. [16]). As discussed
in Sec. S-6 D, this is the only region where the persis-
tent shear-band develops and it is natural to expect that
the presence of the shear-band at large system sizes (see
Table I) influences EIS near the yielding point. The in-
set of Fig. S10(a) shows that there is a small but dis-
tinct discontinuous change of EIS for N = 48000 at the
yielding point, which is not clearly observed for smaller
systems. A similar discontinuity has been reported in
Ref. [9]. The reason why we do not clearly observe dis-
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continuous jumps for smaller systems may be because i)
the persistent shear-band is absent after yielding and ii)
the systems are trapped to the reversible state easily be-
fore proper relaxation before yielding. We still have not
fully confirmed these conclusions. Other studies showed
a discontinuous, though less sharp, even for the small
systems [20].

Fig. S11 shows that rheological properties are also sen-
sitive to N in the vicinity of the yielding point due to
the presence of persistent shear-band of the large sys-
tem. In particular, in the largest system we simulated
(N = 48000), one observes very small but finite discon-
tinuous changes of observables even though the system is
poorly annealed.
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